Analysis of Multiple Yoffe-type Moving Cracks in an Orthotropic Half-Plane under Mixed Mode Loading Condition

Authors

  • Reza Sourki Faculty of Engineering, University of Zanjan, Zanjan, Iran
  • Reza Yaghoubi Department of Mechanical Engineering, University of Tarbiat Modares, Tehran, Iran
Abstract:

The present paper deals with the mixed mode fracture analysis of a weakened orthotropic half-plane with multiple cracks propagation. The orthotropic half-plane contains Volterra type glide and climb edge dislocations. It is assumed that the medium is under in-plane loading conditions. The distributed dislocation technique is used to obtain integral equations for the dynamic problem of multiple smooth cracks which are located in an orthotropic half-plane. At first, with the help of Fourier transform the dislocation problem is solved and the stress fields are obtained. The integral equations are of Cauchy type singularity and are solved numerically to obtain the dislocation densities on the surface of several cracks to determine the dynamic stress intensity factors on the crack tips. Several numerical examples are solved to evaluate mode I and mode II dynamic stress intensity factors to show the effects of the orthotropy parameters, crack lengths, and crack speed on the dynamic stress intensity factors.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

In-Plane Analysis of an FGP Plane Weakened by Multiple Moving Cracks

In this paper, the analytical solution of an electric and Volterra edge dislocation in a functionally graded piezoelectric (FGP) medium is obtained by means of complex Fourier transform. The system is subjected to in-plane mechanical and electrical loading. The material properties of the medium vary exponentially with coordinating parallel to the crack. In this study, the rate of the gradual ch...

full text

Multiple cracks in an elastic half-plane subjected to thermo-mechanical loading

An analytical solution is presented for the thermoelastic problem of a half-plane with several cracks under thermo mechanical loading using distributed dislocation technique. The uncoupled quasi-static linear thermoelasticity theory is adopted in which the change in temperature, if any, due to deformations is neglected. The stress field in a half-plane containing thermoelastic dislocation is ob...

full text

Multiple Moving Cracks in a Nonhomogeneous Orthotropic Strip

The problem of several finite moving cracks in a functionally graded material is solved by dislocation technique under the condition of anti-plane deformation. By using the Fourier transform the stress fields are obtained for a functionally graded strip containing a screw dislocation. The stress components reveal the familiar Cauchy singularity at the location of dislocation. The solution is em...

full text

Mixed Mode Fracture Analysis of Multiple Interface Cracks

This paper contains a theoretical formulation of multiple interface cracks in two bonded dissimilar half planes subjected to in-plane traction. The distributed dislocation technique is used to construct integral equations for a dissimilar mediums weakened by several interface cracks. These equations are of Cauchy singular type at the location of dislocation, which are solved numerically to obta...

full text

Multiple moving cracks in an orthotropic strip sandwiched between two piezoelectric layers

In this paper, the solution of a moving Volterra-type screw dislocation in an orthotropic layer, bonded between two piezoelectric layers is obtained using complex Fourier transform. The dislocation solution is then employed as strain nuclei to derive singular integral equations for a medium weakened by multiple moving cracks. These equations, which are classified as, Cauchy singular equations, ...

full text

multiple moving cracks in a nonhomogeneous orthotropic strip

the problem of several finite moving cracks in a functionally graded material is solved by dislocation technique under the condition of anti-plane deformation. by using the fourier transform the stress fields are obtained for a functionallygraded strip containing a screw dislocation. the stress components reveal the familiar cauchy singularity at thelocation of dislocation. the solution is empl...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 18  issue 2

pages  39- 62

publication date 2017-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023